
1

INF 111 / CSE 121:
Software Tools and Methods

Lecture Notes for Fall Quarter, 2007
Michele Rousseau
Set 9

Topic 9 2

Previous Lecture
Testing

Topic 9 3

Today’s Lecture

More on Testing
● Static Analysis

◘Code Walkthroughs / Inspections
● Formal Verification
●Dynamic Testing

2

Topic 9 4

Typical Testing Process

Program /
Spec

Test
Strategy

Program /
Spec

Oracle

Compare
Input

Test
Results

Subset of
Input

Subset of
Input

Expected
Output

Actual
Output

Topic 9 5

Software Testing
Exercising a system [component]
● on some predetermined input data
● capturing the behavior and output data
● comparing with test oracle
● for the purposes of

◘ identifying inconsistencies
◘ verifying consistency between actual results and

specification
• to provide confidence in consistency with requirements and

measurable qualities
• to demonstrate subjective qualities

◘ validating against user needs
Limitations
● only as good as the test data selected
● subject to capabilities of test oracle

Topic 9 6

Remember the Diff Levels of Testing

System Testing
● Defined at Requirements -> Run after integration

testing
Integration Testing
● Defined at Design -> Run after Unit Testing

Unit Testing
● Defined at Implementation -> Run after

Implementation of each unit
Regression Testing (testing after Change)
● Defined throughout the process -> Run after

modifcations

3

Topic 9 7

V-Model of Development & Testing
(the big picture)

Develop Acceptance Tests
Acceptance Test Review

Requirements Review
Develop Requirements Execute System Tests

Develop Integration Tests
Integration Tests Review

Design Review
Design Execute Integration Tests

Develop Unit Tests
Unit Tests Review

Code Review
Code Execute Unit Tests

Topic 9 8

Goals of Testing
Reveal failures/faults/errors
Locate failures/faults/errors
Show system correctness
Improve confidence that the system
performs as specified (verification)
Improve confidence that the system
performs as desired (validation)
Desired Qualities:
● Accurate
●Complete / thorough
●Repeatable
● Systematic

Topic 9 9

Static Analysis
Examine & analyze source code
Goal:
● Discovering anomalies and defects

May be used before implementation
● Execution is not Required

May be applied to any representation of
the system
● Requirements
● Design
● Test data, etc…

4

Topic 9 10

Static Analysis

Very effective technique for discovering errors

They reuse domain and programming
knowledge
● reviewers are likely to have seen the types of error

that commonly arise

Examples:
● Code Reviews &
● Inspections

Topic 9 11

Code Reviews (“Walk-throughs”)

Developer presents the code to a small group of
colleagues
● Developer describes software
● Developer describes how it works

◘ “Walks through the code”
● Free-form commentary/questioning by colleagues

Benefits
● Many eyes, many minds
● Effective

Drawbacks
● Can lead to problems between developer and colleagues

Topic 9 12

Inspections
Small Team
● Author (Programmer)

◘ Silent observer
◘ Knows the code too well – might introduce bias

● Reader
◘ Presents the code
◘ May have 1 or 2

● Tester
◘ Reviews the code “Testing point of view”
◘ May have 1 or 2

● Moderator
◘ Conducts the inspection
◘ Motivates other participants
◘ Not directly involved with the product being inspected
◘ Keeps the team focused and together

5

Topic 9 13

Inspection Process

Planning

Overview
Individual

Prep
Inspection

Rework

Re-Inspect

Topic 9 14

Pre-Inspection Stages
Planning
● Select the team
●Organize when and where
● Ensure code and spec are complete

Overview
● Present general description of the material

to be inspected
Individual preparation
● Each member inspects the code and the

spec

Topic 9 15

Program Inspection
Should be short
Exclusively focused on defects,
anomalies, & non-compliance with
standards
Should not recommend changes or
suggest corrections
Paraphrase code a few lines at a
time
● Express meaning at a higher level of

abstraction
Code is analyzed using a checklist

6

Topic 9 16

Code Checklist
Wrong use of data
● Variables not initialized
● Array index out of bounds
● Dangling pointers

Faults in declaration / use of variables
● Duplicate use of variable names

Faults in computations
● Div by 0
● Type mismatch of variables

Topic 9 17

Code Checklist (2)

Faults in relational expressions
● Incorrect operator use (> instead of >)

Faults in Control Flow
● Infinite loops
● Off by 1 errors

Faults in Interfaces
● Incorrect number of parameters
● Passing the wrong type
● Inconsistent use of global variables

Topic 9 18

Rework & Re-inspection

Rework
● Author corrects code

Re-inspection
●Can be done by team or moderator
●Can either check for new problems that

may have arisen
●Can verify errors were corrected

7

Topic 9 19

Length of Inspection

Can cover up to 500 statements per
hour
●Depending on experience of team
●Usually more like 125/hor

Should not go for more than 2 hours
Should be done frequently

Topic 9 20

Inspections

Cons:
●Can be too shallow
● Programmers can be defensive

◘Evaluations of the programmer should not be
determined by reviews

● Team may have insufficient knowledge of
the domain

Topic 9 21

Inspections and Testing

Inspections and testing are
complementary and not opposing
verification techniques
Both should be used during the V & V
process
Inspections can check conformance with
a specification
● Can’t check conformance with the customer’s

real requirements
● Cannot validate dynamic behaviour

Inspections cannot check non-functional
characteristics such as performance,
usability, etc.

8

Topic 9 22

Tools for Static Analysis
Scan source text & detect possible faults /
anomalies
● Look for possible erroneous situations such as:

◘ Unused variables
◘ Undeclared variables
◘ Unreachable code
◘ Variables used before initialization
◘ Parameter type mismatches
◘ Parameter number mismatches
◘ Uncalled functions or procedures
◘ Non-usage of function results
◘ Possible array bound violations
◘ Misuse of pointers

Topic 9 23

Formal Verification

Techniques for proving consistency
between two software descriptions
● to prove consistency of specification
● to prove correctness of implementation

Correctness
Correct with respect to the specification

Topic 9 24

Requirements
Specification

User Needs

Formal Requirements
Specification

Architectural
Specification

Formal Module
Specifications

System Software
Implementation

analyze properties
of requirements

analyze properties
of modules

verify consistency
between specifications

verify consistency
between specification
and implementation

informally vaidate
consistency between
needs and requirements

NOTE: may be multiple
levels of specification
and appropriate verification
at any stage analyze properties

of module interfaces

informally verify
consistency between
formal and informal requirements

Verification with Formal Specs

9

Topic 9 25

Formal Verification / Validation
Some shortcomings
● does not show other qualities

◘ Performace, usability, etc..
● May not scale up
● only informal techniques for validating against user needs
● subject to assumptions of proof system
● only as good as formal specification
● Not trivial tedious
● Not always cost effective

Generally used on a part of the system
Example: Mathematically Based Verification

Topic 9 26

Mathematically Based Verification

Must have formal specifications
● Notation must be consistent with mathematical

verification techniques

The programming lang. must have formal
semantics

This is an intensive process but…
● Can verify correctness

Generally,
● Not cost effective for large systems

Topic 9 27

Tools for Mathematical Verification

Can it be automated?
● Theorem provers

◘Assist in developing proofs
●Usually work with a subset of the program
●Not completely automated

10

Topic 9 28

The problem with Testing
Can’t test exhaustively
● Not feasible to run all those test cases
● Not feasible to validate them once they are run

Want to verify software
Need to test

Need to decide on test cases

But,
no set of test cases guarantees absence of bugs,

So,

Topic 9 29

Testing Techniques

So,
We need to find a systematic approach to
selecting of test cases that will lead to:
● accurate,
● acceptably thorough,
● repeatable identification of errors, faults,

and failures?

Topic 9 30

Practical Issues
Purpose of testing
● Fault detection
●High assurance of reliability
● Performance/stress/load
●Regression testing of new versions

Conflicting considerations
● safety, liability, risk, customer satisfaction,

resources, schedule, market windows and
share

Test Selection is a sampling
technique
● choose a finite set from an infinite domain

11

Topic 9 31

How to make the most of limited resources?

Fundamental Testing Questions

Test Criteria: What should we test?
Test Oracle: Is the test correct?
Test Adequacy: How much is
enough?
Test Process: Is our testing
effective?

Topic 9 32

Test Criteria
Testing must select a subset of test cases
that are likely to reveal failures

Test Criteria provide the guidelines, rules,
strategy by which test cases are selected
● actual test data
● conditions on test data
● requirements on test data

Equivalence partitioning is the typical
approach
● a test of any value in a given class is equivalent to a

test of any other value in that class
● if a test case in a class reveals a failure, then any

other test case in that class should reveal the failure
● some approaches limit conclusions to some chosen

class of errors and/or failures

Topic 9 33

Test Oracles
Where does “expected output” come
from?

Critical to testing
Difficult to create systematically
Typically done with a lot of guesswork
●Typically relies on humans
● great dependence on the intuition of testers

Formal specifications make it possible to
automate oracles

A test oracle is a mechanism for
deciding whether a test case execution

failed or succeeded

12

Topic 9 34

What Does an Oracle Do?
Your test shows cos(0.5) =
0.8775825619
You have to decide whether this
answer is correct?
You need an oracle
●Draw a triangle and measure the sides
● Look up cosine of 0.5 in a book
●Compute the value using Taylor series

expansion
●Check the answer with your desk

calculator

Topic 9 35

Test Adequacy
Coverage metrics
● when sufficient percentage of the program

structure has been exercised
Empirical assurance
● when failures/test curve flatten out

Error seeding
● percentage of seeded faults found is proportional

to the percentage of real faults found
Independent testing
● faults found in common are representative of total

population of faults

